The effect of conductive ventilation heterogeneity on diffusing capacity measurement.
نویسندگان
چکیده
It has long been assumed that the ventilation heterogeneity associated with lung disease could, in itself, affect the measurement of carbon monoxide transfer factor. The aim of this study was to investigate the potential estimation errors of carbon monoxide diffusing capacity (Dl(CO)) measurement that are specifically due to conductive ventilation heterogeneity, i.e., due to a combination of ventilation heterogeneity and flow asynchrony between lung units larger than acini. We induced conductive airway ventilation heterogeneity in 35 never-smoker normal subjects by histamine provocation and related the resulting changes in conductive ventilation heterogeneity (derived from the multiple-breath washout test) to corresponding changes in diffusing capacity, alveolar volume, and inspired vital capacity (derived from the single-breath Dl(CO) method). Average conductive ventilation heterogeneity doubled (P < 0.001), whereas Dl(CO) decreased by 6% (P < 0.001), with no correlation between individual data (P > 0.1). Average inspired vital capacity and alveolar volume both decreased significantly by, respectively, 6 and 3%, and the individual changes in alveolar volume and in conductive ventilation heterogeneity were correlated (r = -0.46; P = 0.006). These findings can be brought in agreement with recent modeling work, where specific ventilation heterogeneity resulting from different distributions of either inspired volume or end-expiratory lung volume have been shown to affect Dl(CO) estimation errors in opposite ways. Even in the presence of flow asynchrony, these errors appear to largely cancel out in our experimental situation of histamine-induced conductive ventilation heterogeneity. Finally, we also predicted which alternative combination of specific ventilation heterogeneity and flow asynchrony could affect Dl(CO) estimate in a more substantial fashion in diseased lungs, irrespective of any diffusion-dependent effects.
منابع مشابه
Transfer factor, lung volumes, resistance and ventilation distribution in healthy adults.
Monitoring of chronic lung disease requires reference values of lung function indices, including putative markers of small airway function, spanning a wide age range.We measured spirometry, transfer factor of the lung for carbon monoxide (TLCO), static lung volume, resistance and ventilation distribution in a healthy population, studying at least 20 subjects per sex and per decade between the a...
متن کاملNonreversible conductive airway ventilation heterogeneity in mild asthma.
A multiple-breath washout technique was used to assess residual ventilation heterogeneity in the conductive and acinar lung zones of asthmatic patients after maximal beta(2)-agonist reversibility. Reversibility was assessed in 13 patients on two separate visits corresponding to a different baseline condition in terms of forced expiratory volume in 1 s [FEV(1); average FEV(1) over 2 visits: 92 +...
متن کاملSimilar ventilation distribution in normal subjects prone and supine during tidal breathing.
Multiple-breath washout (MBW) tests, with end-expiratory lung volume at functional residual capacity (FRC) and 90% O(2), 5% He, and 5% SF(6) as an inspired gas mixture, were performed in healthy volunteers in supine and prone postures. The semilog plot of MBW N(2) concentrations was evaluated in terms of its curvilinearity. The MBW N(2) normalized slope analysis yielded indexes of acinar and co...
متن کاملPulmonary function in status asthmaticus: effect of therapy.
In 11 patients with bronchial asthma, lung volumes, FEV1.0, PaO2, and lung diffusing capacity (single breath CO method) were measured in status asthmaticus and after recovery. Ventilatory capacity improved following therapy. The improvement was associated with a rise in vital capacity and a fall in residual volume, but the total lung capacity might either decrease, increase or remain unchanged....
متن کاملEffect of airways constriction on exhaled nitric oxide.
While airway constriction has been shown to affect exhaled nitric oxide (NO), the mechanisms and location of constricted airways most likely to affect exhaled NO remain obscure. We studied the effects of histamine-induced airway constriction and ventilation heterogeneity on exhaled NO at 50 ml/s (Fe(NO,50)) and combined this with model simulations of Fe(NO,50) changes due to constriction of air...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 104 4 شماره
صفحات -
تاریخ انتشار 2008